Devil flower research attracts attention of biomedical investment company

Health Science Center research on potential cancer treatment derived from tropical plant gets a boost from commercial development fund

SAN ANTONIO (October 31, 2012) — Promising new potential anti-cancer agents isolated at The University of Texas Health Science Center at San Antonio have attracted the attention — and investment — of Dallas-based investment fund Remeditex Ventures, LLC.

Remeditex recently inked a deal through South Texas Technology Management, a regional technology transfer office, to fund research on compounds derived from those found in the bat flower plant, or Tacca chantrieri, also called the devil flower. The sponsored research agreement supports a critical point in the new drug’s development that falls between the early discovery stage and the process of taking it to clinical trials, said Claire Aldridge, Ph.D., vice president of venture development at Remeditex.

If the initial testing is successful, Remeditex has the option to license the technology either by forming a new company or working with an existing company, said STTM Executive Director Arjun Sanga, J.D., assistant vice president for technology transfer at the UT Health Science Center.

Susan Mooberry, Ph.D., co-leader of the Experimental Development Therapeutics Program at the Cancer Therapy & Research Center and a professor of pharmacology in the School of Medicine at the UT Health Science Center, has been working with substances in the bat plant called taccalonolides that have the potential of Taxol. Taxol is an effective chemotherapy drug, but patients eventually develop problems with resistance over time and it loses effectiveness. An advantage of the taccalonolides is that they can overcome common resistance mechanisms.

Microtubules are structures in the cells that act as conveyer belts. They help maintain cell shape and help guide chromosomes in cell division to ensure that every new cell, including every new cancer cell, gets a full complement of genetic material. Microtubules also move cargo around the cell, including the molecules that act as the accelerator, driving cancer cell metabolism and proliferation. When microtubules are stabilized — essentially held still so they can’t do their jobs — this disrupts numerous cellular processes, and the cell can die.

The taccalonolides stabilize microtubules in cancer cells, Dr. Mooberry said. At concentrations that kill cancer cells, they are not toxic to normal cells. “We’ve run normal prostate cells and normal breast cells through these tests, and they don’t die. The taccalonolides selectively kill cancer cells.”
Last year Dr. Mooberry’s team identified new taccalonolides, never before identified and several of these almost a thousand times more potent than the most common taccalonolides. These new compounds revealed for the first time how the taccalonolides interact with microtubules.

But as with all new drugs, other questions must be answered, Dr. Aldridge said. For instance, researchers would need to show that a promising new medicine is effective in preclinical tumor models and is metabolized slowly enough in the body to be effective. They must see if it has toxicity issues.

“Answering these questions is crucial to getting an effective application in front of the FDA in order to move forward with a clinical trial,” Dr. Aldridge said. “We look for promising technologies that with some investment we could take to the ‘go or no go’ decision fairly quickly, and we see great promise in the taccalonolides.”

The University of Texas Health Science Center at San Antonio, one of the country’s leading health sciences universities, ranks in the top 3 percent of all institutions worldwide receiving federal funding. Research and other sponsored program activity totaled $231 million in fiscal year 2011. The university’s schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced approximately 28,000 graduates. The $736 million operating budget supports eight campuses in San Antonio, Laredo, Harlingen and Edinburg. For more information on the many ways “We make lives better®,” visit

South Texas Technology Management (STTM) is The University of Texas technology transfer office managed by the Health Science Center. STTM also serves three other institutions in South Texas. STTM provides leadership in promoting innovation and technology transfer through proactive management of intellectual property, technology development and commercialization to support the missions of member institutions, to advance regional economic development and to benefit the public. Please refer to to learn more about STTM or other innovative technologies.

Remeditex is a company that seeks to develop opportunities in need of commercial validation, guidance, and capital. Its mission is to develop early stage biomedical science and make Texas and Colorado a preferred location for biotechnology companies, venture capitalists, and entrepreneurs by accelerating the pace of commercialization of biomedical research; help create and support a thriving biotechnology industry; attract biotech venture capital to Texas and Colorado; and achieve significant returns to support the next generation of promising science. Learn more at

Share This Article!